Founded by Eluthera Technologies.

Categories

Python
C++
MATLAB
C
Assembly
Java
Rust

Code Snippets & Examples

Explore ready-to-use coding resources.

Quick Sort with Detailed Logging

import time

def quick_sort(arr, depth=0):
    indent = "  " * depth
    print(f"{indent}Sorting: {arr}")
    
    if len(arr) <= 1:
        print(f"{indent}Returning sorted: {arr}")
        return arr
    
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]

    sorted_left = quick_sort(left, depth + 1)
    sorted_right = quick_sort(right, depth + 1)

    sorted_arr = sorted_left + middle + sorted_right
    print(f"{indent}Merged: {sorted_arr}")
    
    return sorted_arr

# Test the function
arr = [34, 7, 23, 32, 5, 62]
sorted_arr = quick_sort(arr)
print("Final sorted array:", sorted_arr)

Neural Network with Custom Activation

import tensorflow as tf
import numpy as np

# Custom activation function
def custom_activation(x):
    return tf.nn.relu(x) - 0.1 * tf.nn.sigmoid(x)

# Create model
model = tf.keras.Sequential([
    tf.keras.layers.Dense(32, input_shape=(10,), activation=custom_activation),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid')
])

# Compile model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Generate synthetic data
X_train = np.random.rand(1000, 10)
y_train = np.random.randint(0, 2, size=(1000,))

# Train model
model.fit(X_train, y_train, epochs=10, batch_size=32)
print("Neural Network Training Complete!")

Optimized Fibonacci Sequence with Memoization

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):
    if n <= 1:
        return n
    return fibonacci(n - 1) + fibonacci(n - 2)

# Compute Fibonacci numbers
for i in range(30):
    print(f"Fibonacci({i}) = {fibonacci(i)}")

Palindrome Check with Case and Space Handling

import re

def is_palindrome(s):
    s = re.sub(r'[^a-zA-Z0-9]', '', s).lower()
    return s == s[::-1]

# Test cases
print(is_palindrome("A man, a plan, a canal: Panama"))  # True
print(is_palindrome("race a car"))  # False

Advanced Binary Search with Recursive Implementation

def binary_search(arr, target, low=0, high=None):
    if high is None:
        high = len(arr) - 1

    if low > high:
        return -1  # Target not found

    mid = (low + high) // 2
    if arr[mid] == target:
        return mid
    elif arr[mid] < target:
        return binary_search(arr, target, mid + 1, high)
    else:
        return binary_search(arr, target, low, mid - 1)

# Example usage
arr = [2, 3, 4, 10, 40]
print("Element found at index:", binary_search(arr, 10))

Factorial Calculation Using Iterative and Recursive Methods

def factorial_recursive(n):
    return 1 if n == 0 else n * factorial_recursive(n - 1)

def factorial_iterative(n):
    result = 1
    for i in range(2, n + 1):
        result *= i
    return result

# Example usage
print("Recursive:", factorial_recursive(5))
print("Iterative:", factorial_iterative(5))

Merge Sort with Performance Analysis

import time

def merge_sort(arr):
    if len(arr) <= 1:
        return arr

    mid = len(arr) // 2
    left = merge_sort(arr[:mid])
    right = merge_sort(arr[mid:])

    return merge(left, right)

def merge(left, right):
    sorted_array = []
    i = j = 0

    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            sorted_array.append(left[i])
            i += 1
        else:
            sorted_array.append(right[j])
            j += 1

    sorted_array.extend(left[i:])
    sorted_array.extend(right[j:])
    return sorted_array

# Test and time analysis
arr = [12, 11, 13, 5, 6, 7]
start_time = time.time()
sorted_arr = merge_sort(arr)
end_time = time.time()

print("Sorted array:", sorted_arr)
print("Execution time:", end_time - start_time, "seconds")

Bubble Sort with Swap Optimization

def bubble_sort(arr):
    n = len(arr)
    for i in range(n):
        swapped = False
        for j in range(0, n - i - 1):
            if arr[j] > arr[j + 1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
                swapped = True
        if not swapped:
            break  # If no swaps occurred, array is already sorted

# Example usage
arr = [64, 34, 25, 12, 22, 11, 90]
bubble_sort(arr)
print("Sorted array:", arr)

Random Password Generator with Custom Rules

import random
import string

def generate_password(length=12, use_special_chars=True):
    characters = string.ascii_letters + string.digits
    if use_special_chars:
        characters += string.punctuation
    return ''.join(random.choice(characters) for i in range(length))

# Example usage
print("Generated Password:", generate_password(16))

Prime Number Checker with Efficiency

def is_prime(n):
    if n <= 1:
        return False
    if n <= 3:
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False

    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
    return True

# Example usage
print("Is 29 prime?", is_prime(29))

Dijkstra’s Algorithm for Shortest Path

import heapq

def dijkstra(graph, start):
    priority_queue = []
    heapq.heappush(priority_queue, (0, start))
    distances = {node: float('inf') for node in graph}
    distances[start] = 0

    while priority_queue:
        current_distance, current_node = heapq.heappop(priority_queue)

        if current_distance > distances[current_node]:
            continue

        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(priority_queue, (distance, neighbor))

    return distances

# Example graph representation
graph = {
    'A': {'B': 1, 'C': 4},
    'B': {'A': 1, 'C': 2, 'D': 5},
    'C': {'A': 4, 'B': 2, 'D': 1},
    'D': {'B': 5, 'C': 1}
}

print("Shortest paths:", dijkstra(graph, 'A'))

Multithreading Example with Locks

import threading

class Counter:
    def __init__(self):
        self.value = 0
        self.lock = threading.Lock()

    def increment(self):
        with self.lock:
            self.value += 1

def worker(counter):
    for _ in range(100000):
        counter.increment()

counter = Counter()
threads = [threading.Thread(target=worker, args=(counter,)) for _ in range(5)]

for t in threads:
    t.start()
for t in threads:
    t.join()

print("Final counter value:", counter.value)

Web Scraper with BeautifulSoup

import requests
from bs4 import BeautifulSoup

def scrape_website(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')

    for heading in soup.find_all('h2'):
        print("Heading:", heading.text.strip())

scrape_website("https://example.com")

Chatbot with Basic NLP

import random

responses = {
    "hello": ["Hello!", "Hi there!", "Hey!"],
    "how are you": ["I'm just a bot, but I'm fine!", "Doing well, thanks!"],
    "bye": ["Goodbye!", "See you later!", "Bye for now!"]
}

def chatbot():
    print("Chatbot: Type 'exit' to end the chat.")
    while True:
        user_input = input("You: ").lower()
        if user_input == "exit":
            print("Chatbot: Goodbye!")
            break
        response = random.choice(responses.get(user_input, ["I don't understand."]))
        print("Chatbot:", response)

chatbot()

Sudoku Solver with Backtracking

def is_valid(board, row, col, num):
    for i in range(9):
        if board[row][i] == num or board[i][col] == num:
            return False

    start_row, start_col = 3 * (row // 3), 3 * (col // 3)
    for i in range(3):
        for j in range(3):
            if board[start_row + i][start_col + j] == num:
                return False
    return True

def solve_sudoku(board):
    for row in range(9):
        for col in range(9):
            if board[row][col] == 0:
                for num in range(1, 10):
                    if is_valid(board, row, col, num):
                        board[row][col] = num
                        if solve_sudoku(board):
                            return True
                        board[row][col] = 0
                return False
    return True

Graph DFS Traversal

def dfs(graph, node, visited=None):
    if visited is None:
        visited = set()

    if node not in visited:
        print(node, end=' ')
        visited.add(node)
        for neighbor in graph.get(node, []):
            dfs(graph, neighbor, visited)

# Example graph
graph = {
    'A': ['B', 'C'],
    'B': ['D', 'E'],
    'C': ['F'],
    'D': [],
    'E': ['F'],
    'F': []
}

dfs(graph, 'A')

Email Sender with SMTP

import smtplib
from email.mime.text import MIMEText

def send_email(to_email, subject, body):
    sender_email = "your_email@example.com"
    sender_password = "your_password"

    msg = MIMEText(body)
    msg["Subject"] = subject
    msg["From"] = sender_email
    msg["To"] = to_email

    try:
        with smtplib.SMTP_SSL("smtp.example.com", 465) as server:
            server.login(sender_email, sender_password)
            server.sendmail(sender_email, to_email, msg.as_string())
        print("Email sent successfully!")
    except Exception as e:
        print("Error sending email:", e)

send_email("recipient@example.com", "Test Subject", "This is a test email.")

Matrix Multiplication

import numpy as np

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
B = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])

C = np.dot(A, B)
print("Resultant Matrix:")
print(C)

Basic Web Server with Flask

from flask import Flask

app = Flask(__name__)

@app.route('/')
def home():
    return "Welcome to my web server!"

if __name__ == '__main__':
    app.run(debug=True)

Stock Price Scraper Using Yahoo Finance API

import yfinance as yf

def get_stock_price(ticker):
    stock = yf.Ticker(ticker)
    return stock.history(period="1d")["Close"].iloc[-1]

print("AAPL Stock Price:", get_stock_price("AAPL"))

Weather Data Fetcher from OpenWeatherMap API

import requests

def get_weather(city):
    API_KEY = "your_api_key_here"
    url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={API_KEY}&units=metric"
    response = requests.get(url).json()
    return f"Weather in {city}: {response['weather'][0]['description']}, Temp: {response['main']['temp']}°C"

print(get_weather("New York"))